
Identification Number: Project report

1

1

Abstract

In this project, the goal is making the given vehicle to go

through several laps while avoiding obstacles positioned

randomly on an un-known track. The given information was

one vehicle that had basic child-script and the track for

practice-only. We trained the given vehicle by utilizing the

policy-based reinforcement learning algorithm.

 Since the vehicle has physical properties, we applied policy

gradient Actor-Critic (DDPG) algorithm with OU-noise to our

project. To prevent overfitting, we randomized tracks and

obstacle’s positions every episode. Lastly, we decided the Input

function having variables such as distance, slope, velocity etc.

and the Reward function having speed variables and obstacle

detection variables making the reinforced learned vehicle able

to detect obstacles and run through the test track more

specifically.

And after the competition, we did another try with different

special Architecture with CNN

I. INTRODUCTION

I. Current status of AI & Effort for development

ntil now, Deep reinforcement learning has been applied

to limited industry and fields. Representatively, there

exist some application examples of it such as AlphaGo,

automatic robots etc. It does not follow a known algorithm or

environment-model, meaning the machine itself does

experiential-learning (Trial & Error) through various factors

such as action, state, reward etc. Based on these factors, in the

future society it is expected that RL will be applied to various

fields such as medical, control system, etc., which in these

fields is difficult for people to visually judge or manually

control.

In this paper, we made a self-driving car as a first step to learn

reinforcement learning algorithms, using V-rep (Simulation

program) and Python language tool in OS Ubuntu.

II. The goal of Reinforcement Learning

The goal for Reinforcement learning is to obtain optimal

policy. There are two main methods to reach the goal. The first

one is Value-based RL, which calculates the policy gradient

from the value-function to get the optimal policy. The opposite

method is Policy-based RL, which parameterizes policy

gradients as an explicit function therefore finding out the

optimal policy via policy gradient function directly.

III. Outline of the Project

 In this project, the object that was getting reinforcement

learning was the car. Considering a vehicle having physical

properties such as mass inertia and continuous action, policy

gradient Actor-Critic (DDPG, policy-based RL) with

OU-Noise (as exploration process) would be good to be applied

to obtain optimal policy gradient of objective function.

Therefore, we constructed Architecture with anctor_net,

critic_net in ddpg.py.

 Input and Reward function are the key factors in order for

our vehicle to detect states and perform properly on test

environment-model. To make it detect obstacles and test track

much more specifically, we put information such as (x, y)

velocity, distance between car and track, slope of road etc into

the input function and configured reward function as an

equation for speed. Lastly, to prevent overfitting, we

randomized track and obstacles position every episode by using

generate_path, rand_int function.

IV. Resource

Computer specification:

 [GPU: GeForce GTX 1050 Ti/PCIe/SSE2 Processor: Intel®

Core™ i5-7600K CPU @ 3.80GHz × 4 Memory : 15.6 GiB]

II. METHOD

[Part1. Architecture of Algorithm]

A. Architecture of Algorithm (DDPG)

Architecture of our algorithm is called DDPG (Policy gradient

actor-critic), which consists of actor_net, critic_net, etc. The

Designing Self-Driving Car based on DDPG &

CNN DDPG - Reinforcement Learning

Tae H. Lee1, Hyun J. Jung1, Sung W. Lee1, Seok I. Son1

Department of Mechanical Engineering, Yonsei University

U

Identification Number: Project report

2

2

reason why we selected this algorithm is that we must control a

vehicle that has a continuous action and several action factors

such as left, right wheel or steering actions.

In other words, it has high dimensions and continuous

variables. To obtain optimal policy for continuous action, we

needed to use off-policy learning that can get new state policy

by referring previous policy. One of the off-policy learning

which meets all conditions (high-Dimension, continuous action

etc) is DDPG algorithm.

 At DDPG, actor updates the policy parameter, and this updated

policy is transferred to critic to evaluate whether the optimized

policy or not by Q-function. After process, it updates the

Q-function parameter. It takes place every action and process.

and minibatch N(𝑠𝑖 , 𝑎𝑖 , 𝑟𝑖 , 𝑠𝑖+1) is set to 64.

Q-function and Policy gradient equations are below and:

𝑄𝜇(𝑠𝑡 , 𝑎𝑡) = 𝔼𝑟𝑡,𝑠𝑡+1 ~Ε[r (𝑠𝑡 , 𝑎𝑡) + 𝛾𝑄𝜇(𝑠𝑡+1, 𝜇(𝑠𝑡+1))] − (1)

∇𝜃𝜇𝒥 =
1

𝑁
∑∇𝑎𝑄(𝑠, 𝑎|𝜃𝑄)|𝑠= 𝑠𝑖,𝑎 =𝜇(𝑠𝑖)∇𝜃𝜇𝜇(𝑠|𝜃𝜇)|

𝑠𝑖
 − (2)

𝑖

And, furthermore, the discount factor is used to measure the

return value that changes as the time-step passes. It has a value

between 0 and 1. According to a well-known paper about RL,

typically (0.1) value is used as discount factor.

B. Architecture of Algorithm (CNN DDPG)

When compared to previous DDPG algorithm, as shown

above Figure 1, there is a big difference which is that CNN

layers inserted before the Fully-connected layers. Input data

passed through CNN contain spatio-temporal features, meaning

these make the agent consider spatial surrounding information

to drive itself more specifically.

[Part2. Components of Algorithm]

1 Environment

I. Randomizing Tracks & Obstacles -notation

In order for our reinforced learned vehicle to perform

properly in an unknown environment-model, we had to prevent

it from overfitting on the specific track. So as to block that kind

of situation, we manipulated the learning environment using

Bezier spline and the ‘generate_path’ function that generates

paths randomly as setting 10 thousand points every episode on

the simulation map.

Furthermore, for every episode, we set up moving and

stationary obstacles to appear on the generated track randomly

by utilizing the ‘rand_int’ function. In details, we made 2 types

of moving obstacles. One kind was moving perpendicularly to

the track as in the real world pedestrians crossing the street. The

other kind was moving along the track like real cars racing

down the street. To avoid situations where the obstacles block

the vehicle’s course on track, we manipulated the obstacles’

orientation by calculating the slope of the track. In this way, we

were able to prevent our car overfitting to only a specific track.

II. Remote API functions (Operation mode)

The training time is a very important factor in RL. The

operation modes that are involved in training time are

Streaming, Synchronous, Blocking function, and non-Blocking

function. [2] When using the blocking or synchronous mode,

buffering occurs since the client and server processes data

before sending or receiving each other. This means that the total

training time is prolonged by buffering. For this reason, we

used streaming mode to get the data immediately whenever we

needed a specific data.

2 Agent

A. Sensor for DDPG algorithm

For the sensor, we used the disk type proximity sensors

instead of the ray proximity sensor. The reason we used the

disk proximity sensor was because of the blind spot between

the two ray proximity sensors. Since the ray types are

straight lines, when the obstacle had distance from the car the

area made by the ray between the arcs will increase, making

the sensor unable to detect the obstacle. Since the disk type

has continuous laser it will make it able for the car to detect

the obstacles more accurately.

The operation principle of the disk type was to detect the

closest distance from the obstacle. The car will treat this

distance as input data, which is called minimum pooling. The

minimum pooling will let the car extract one of the most

[Figure 1. Architecture with CNN]

Identification Number: Project report

3

3

important surrounding data for every disk types proximity

sensors.

Total 20 disk types proximity sensors were installed all

around the car but the lengths for each sensor was different.

Since we want to give a different sensitivity to side and front

of the agent. the proximity sensors on the side were much

shorter than the LiDAR on the front as shown above.

B. Sensor for CNN DDPG algorithm

 For the CNN DDPG, one channel LiDAR with 20 m diameter

is adopted. And it can perceive 96 data at once a time.

3. Input Function

A. Input data for DDPG algorithm

As we mentioned before in the sensor part, each 20 data from

the proximity sensors were used for detecting the obstacles

more specifically.

And 20 data were stacked 3 times, which means the data from

the previous steps were considered with the current proximity

sensor data in order to consider previous spatial information;

total 60 proximity data. In addition, 5 input data were used.

5 input data are as follow:

i. Distance between the car and the centerline

ii. Distance between the car and the boundary line.

iii. Angle between the car’s direction and slope of the track.

iv. Velocity of the car’s x direction.

v. Velocity of the car’s y direction.

B. Input data for CNN DDPG algorithm

For the same reason, in this case, we have stacked 96 data four

times; 376 LiDAR data. And 5 input data also were used.

C. Data normalization

Afterwards we normalized the data so as to prevent being

stuck in the local optimum and train agent efficiently.

4. Reward Function

 The main reward function are as follows.

𝑅𝑡𝑜𝑡𝑎𝑙 = 𝑅(𝑆𝑝𝑒𝑒𝑑 𝑥) − [𝑅(𝐶𝑟𝑎𝑠ℎ) + 𝑅(𝐿𝑖𝐷𝐴𝑅)]

The main components are as follows:

i. R (speed x):

 This reward is given to the agent to move forward fast as much

as possible on the track. Reward is simply proportional to speed

x which is the speed for along the direction on the track.

ii. R (Crash):

The crash reward is for avoiding crash with obstacles

including guardrail. We set the crash reward as a high penalty

value 20.

iii. R (LiDAR):

The reward function is shown below. we set the reward started

to be given when the LiDAR length between the agent and the

obstacles become half of the original length. Other than 0 to 0.5,

reward was set to be 0 value.

𝑦 = {
− (

1

𝑥 + 0.5
) + 1 (0 ≤ 𝑥 ≤ 0.5)

0 (𝑥 < 0, 𝑥 > 0.5)
 − (3)

[Figure 3. Reward Function for the LiDAR]

5. Action

I. Exploration (OU-Noise)

One problem generated by policy-gradient learning is that

the agent’s action can converge to a local optimum. It means

there may be a more optimized policy that is appropriate for the

environment, but the car’s action is stuck in the local optimum

and does not seek a better resolution; which is called global

optimum.

 In order to avoid getting stuck in the local optimum,

exploratory behavior needs to be led by parameter noise, the

noise which is injected into the parameter space. Beyond many

kinds of noise factor we’ve chosen Ornstein-Uhlenbeck process

noise. (Matthias et al) [1] OU-Noise is a non-trivial solution

that satisfies all of the gaussian process, Markov process, and

temporally homogenous condition. That solution written as

below

d𝑥𝑡 = 𝜃(𝜇 − 𝑥𝑡)𝑑𝑡 + 𝜎𝑑𝑊𝑡 – (1)

 This OU-process is suitable for the stochastic needed for free

model and continuous-time process needed for inertial vehicle.

The adjustable parameters in the OU noise (equation (1)) are

[Figure 2 Agent model]

Identification Number: Project report

4

4

theta, mu, sigma. By adjusting the variables, we could obtain

the optimized parameters such as mu=0, theta=0.15, Sigma=0.2.

II. Activation function (Throttle & Brake)

[Figure 4. Throttle & Brake graph]

For the agent action, there are two main actions to avoid

obstacle effectively, one is throttling and the other is braking.

Figure 4. is about speed with time when the agent throttles from

stationary state or brake from running state. We used hyper

tangent function as activation function (left side of Figure 4)

But we modified negative action into positive action by

applying the absolute function to it. (right side of Figure 4) [1]

it can minimize the vanishing effect for the agent action. That is

reason why we applied this modified function to our agent

operation mechanism.

 And about the steering part, we used the Ackerman steering

which has the same curvature of the left, right wheel, which

makes our car turn corner smoothly.

III. RESULT

We trained total 4 thousand episodes which is equivalent to

300 thousand steps. And training simulation continue until the

agent collide with obstacles or guardrail. Figure 5 is about the

distance the car traveled till collision for every training episode.

The algorithm used on the left graph is DDPG algorithm we

used at competition. And the other side is CNN DDPG we

applied newly.

50 episodes for the test

Architecture DDPG CNN DDPG

Distance 1210 m 1380 m

Difference rate (%) 14.05 %

[Table 1. Difference rate of distance of two architectures]

After the training, we conducted the test for 50 episodes. Test

simulation also continue till collision. As a result, the agent

with DDPG algorithm moved 1210 m distance in average and

CNN DDP algorithm moved 1380 m distance in average

without collision. And difference rate of the distance is 14.05 %.

Based on the result of table 1. We could obtain the conclusion

that CNN DDPG is more stable than DDPG algorithm.

IV. CONCLUSION

In this project, we constructed two architectures of the

algorithm which are DDPG & CNN DDPG for the self-driving

car. We expected CNN DDPG to be more stable. This is

because the data passed through CNN layers contain

spatio-temporal features which are more about surrounding

information. As a result, we checked each algorithm’s

performance as moving distance without collision and

confirmed that the agent with CNN DDPG could go farther and

more stables.

V. REFERENCE

[1] Matthias Plappert, Rein Houthooft, Prafulla Dhariwal,

Szymon Sidor, Richard Y. Chen, Xi Chen, Tamim Asfour,

Pieter Abbeel, and Marcin Andrychowicz – Parameter

space noise for exploration,Karlsruhe Institue of

Technology (KIT)1 University of California, Berkeley2,

ICLR 2018

[2] http://www.coppeliarobotics.com/helpFiles/ - V-REP User

Manual version 3.5.0.

[3] Lei Tai, Giuseppe Paolo, Ming Liu – Virtual-to-real Deep

Reinforcement Learning: Continuous Control of Mobile

Robots for Maples Navigation, 1703.00420v4 21 July

2017.

[Figure 5. comparing results of two architectures]

