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Abstract 
 

In this project, the goal is making the given vehicle to go 

through several laps while avoiding obstacles positioned 

randomly on an un-known track. The given information was 

one vehicle that had basic child-script and the track for 

practice-only. We trained the given vehicle by utilizing the 

policy-based reinforcement learning algorithm.  

  Since the vehicle has physical properties, we applied policy 

gradient Actor-Critic (DDPG) algorithm with OU-noise to our 

project. To prevent overfitting, we randomized tracks and 

obstacle’s positions every episode. Lastly, we decided the Input 

function having variables such as distance, slope, velocity etc. 

and the Reward function having speed variables and obstacle 

detection variables making the reinforced learned vehicle able 

to detect obstacles and run through the test track more 

specifically. 

And after the competition, we did another try with different 

special Architecture with CNN  

 

I. INTRODUCTION 

 

I.  Current status of AI & Effort for development 

ntil now, Deep reinforcement learning has been applied 

to limited industry and fields. Representatively, there 

exist some application examples of it such as AlphaGo, 

automatic robots etc. It does not follow a known algorithm or 

environment-model, meaning the machine itself does 

experiential-learning (Trial & Error) through various factors 

such as action, state, reward etc. Based on these factors, in the 

future society it is expected that RL will be applied to various 

fields such as medical, control system, etc., which in these 

fields is difficult for people to visually judge or manually 

control.  

In this paper, we made a self-driving car as a first step to learn 

reinforcement learning algorithms, using V-rep (Simulation 

program) and Python language tool in OS Ubuntu. 

 

 
 

II.  The goal of Reinforcement Learning 

The goal for Reinforcement learning is to obtain optimal 

policy. There are two main methods to reach the goal. The first 

one is Value-based RL, which calculates the policy gradient 

from the value-function to get the optimal policy. The opposite 

method is Policy-based RL, which parameterizes policy 

gradients as an explicit function therefore finding out the 

optimal policy via policy gradient function directly. 

 

III.  Outline of the Project 

     In this project, the object that was getting reinforcement 

learning was the car. Considering a vehicle having physical 

properties such as mass inertia and continuous action, policy 

gradient Actor-Critic (DDPG, policy-based RL) with 

OU-Noise (as exploration process) would be good to be applied 

to obtain optimal policy gradient of objective function. 

Therefore, we constructed Architecture with anctor_net, 

critic_net in ddpg.py.  

  Input and Reward function are the key factors in order for 

our vehicle to detect states and perform properly on test 

environment-model. To make it detect obstacles and test track 

much more specifically, we put information such as (x, y) 

velocity, distance between car and track, slope of road etc into 

the input function and configured reward function as an 

equation for speed. Lastly, to prevent overfitting, we 

randomized track and obstacles position every episode by using 

generate_path, rand_int function. 

 

IV.  Resource 

Computer specification: 

 [GPU: GeForce GTX 1050 Ti/PCIe/SSE2 Processor: Intel®  

Core™ i5-7600K CPU @ 3.80GHz × 4 Memory : 15.6 GiB] 

 

II. METHOD 

 

[Part1. Architecture of Algorithm] 

A. Architecture of Algorithm (DDPG) 

Architecture of our algorithm is called DDPG (Policy gradient 

actor-critic), which consists of actor_net, critic_net, etc. The 
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reason why we selected this algorithm is that we must control a 

vehicle that has a continuous action and several action factors 

such as left, right wheel or steering actions.  

In other words, it has high dimensions and continuous 

variables. To obtain optimal policy for continuous action, we 

needed to use off-policy learning that can get new state policy 

by referring previous policy. One of the off-policy learning 

which meets all conditions (high-Dimension, continuous action 

etc) is DDPG algorithm. 

 At DDPG, actor updates the policy parameter, and this updated 

policy is transferred to critic to evaluate whether the optimized 

policy or not by Q-function. After process, it updates the 

Q-function parameter. It takes place every action and process. 

and minibatch N(𝑠𝑖 , 𝑎𝑖 , 𝑟𝑖 , 𝑠𝑖+1) is set to 64. 

Q-function and Policy gradient equations are below and:  
 

𝑄𝜇(𝑠𝑡 , 𝑎𝑡)  =   𝔼𝑟𝑡,𝑠𝑡+1 ~Ε[r (𝑠𝑡 , 𝑎𝑡)  +  𝛾𝑄𝜇(𝑠𝑡+1, 𝜇(𝑠𝑡+1))]  − (1) 
 

∇𝜃𝜇𝒥 =
1

𝑁
∑∇𝑎𝑄(𝑠, 𝑎|𝜃𝑄)|𝑠= 𝑠𝑖,𝑎 =𝜇(𝑠𝑖)∇𝜃𝜇𝜇(𝑠|𝜃𝜇)|

𝑠𝑖
 − (2) 

𝑖

  

And, furthermore, the discount factor is used to measure the 

return value that changes as the time-step passes. It has a value 

between 0 and 1. According to a well-known paper about RL, 

typically (0.1) value is used as discount factor.  

 

B. Architecture of Algorithm (CNN DDPG) 

When compared to previous DDPG algorithm, as shown 

above Figure 1, there is a big difference which is that CNN 

layers inserted before the Fully-connected layers. Input data 

passed through CNN contain spatio-temporal features, meaning 

these make the agent consider spatial surrounding information 

to drive itself more specifically. 

 

[Part2. Components of Algorithm] 
 

1 Environment  

I. Randomizing Tracks & Obstacles -notation 

In order for our reinforced learned vehicle to perform 

properly in an unknown environment-model, we had to prevent 

it from overfitting on the specific track. So as to block that kind 

of situation, we manipulated the learning environment using 

Bezier spline and the ‘generate_path’ function that generates 

paths randomly as setting 10 thousand points every episode on 

the simulation map.  

Furthermore, for every episode, we set up moving and 

stationary obstacles to appear on the generated track randomly 

by utilizing the ‘rand_int’ function. In details, we made 2 types 

of moving obstacles. One kind was moving perpendicularly to 

the track as in the real world pedestrians crossing the street. The 

other kind was moving along the track like real cars racing 

down the street. To avoid situations where the obstacles block 

the vehicle’s course on track, we manipulated the obstacles’ 

orientation by calculating the slope of the track. In this way, we 

were able to prevent our car overfitting to only a specific track. 

 

II. Remote API functions (Operation mode) 

The training time is a very important factor in RL. The 

operation modes that are involved in training time are 

Streaming, Synchronous, Blocking function, and non-Blocking 

function. [2] When using the blocking or synchronous mode, 

buffering occurs since the client and server processes data 

before sending or receiving each other. This means that the total 

training time is prolonged by buffering. For this reason, we 

used streaming mode to get the data immediately whenever we 

needed a specific data.  

 

2 Agent 

A. Sensor for DDPG algorithm  

For the sensor, we used the disk type proximity sensors 

instead of the ray proximity sensor. The reason we used the 

disk proximity sensor was because of the blind spot between 

the two ray proximity sensors. Since the ray types are 

straight lines, when the obstacle had distance from the car the 

area made by the ray between the arcs will increase, making 

the sensor unable to detect the obstacle. Since the disk type 

has continuous laser it will make it able for the car to detect 

the obstacles more accurately.  

The operation principle of the disk type was to detect the 

closest distance from the obstacle. The car will treat this 

distance as input data, which is called minimum pooling. The 

minimum pooling will let the car extract one of the most  

[Figure 1. Architecture with CNN] 
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important surrounding data for every disk types proximity 

sensors. 

Total 20 disk types proximity sensors were installed all 

around the car but the lengths for each sensor was different.  

Since we want to give a different sensitivity to side and front 

of the agent. the proximity sensors on the side were much 

shorter than the LiDAR on the front as shown above.  

  

B. Sensor for CNN DDPG algorithm  

 For the CNN DDPG, one channel LiDAR with 20 m diameter 

is adopted. And it can perceive 96 data at once a time.   

 

3. Input Function 

A. Input data for DDPG algorithm  

As we mentioned before in the sensor part, each 20 data from 

the proximity sensors were used for detecting the obstacles 

more specifically.  

And 20 data were stacked 3 times, which means the data from 

the previous steps were considered with the current proximity 

sensor data in order to consider previous spatial information; 

total 60 proximity data. In addition, 5 input data were used.  

5 input data are as follow: 

i. Distance between the car and the centerline 

ii. Distance between the car and the boundary line. 

iii. Angle between the car’s direction and slope of the track. 

iv. Velocity of the car’s x direction. 

v. Velocity of the car’s y direction. 

 

B. Input data for CNN DDPG algorithm 

For the same reason, in this case, we have stacked 96 data four 

times; 376 LiDAR data. And 5 input data also were used. 

 

C. Data normalization 

Afterwards we normalized the data so as to prevent being 

stuck in the local optimum and train agent efficiently. 

 

4. Reward Function 

 The main reward function are as follows. 

𝑅𝑡𝑜𝑡𝑎𝑙 = 𝑅(𝑆𝑝𝑒𝑒𝑑 𝑥)  − [𝑅(𝐶𝑟𝑎𝑠ℎ)  +   𝑅(𝐿𝑖𝐷𝐴𝑅)] 
 

The main components are as follows: 
 

i. R (speed x):  

 This reward is given to the agent to move forward fast as much 

as possible on the track. Reward is simply proportional to speed 

x which is the speed for along the direction on the track. 
 

ii. R (Crash): 

The crash reward is for avoiding crash with obstacles 

including guardrail. We set the crash reward as a high penalty 

value 20. 
 

iii. R (LiDAR): 

The reward function is shown below. we set the reward started 

to be given when the LiDAR length between the agent and the 

obstacles become half of the original length. Other than 0 to 0.5, 

reward was set to be 0 value. 

 

𝑦 = {
− (

1

𝑥 +  0.5
) + 1    (0 ≤ 𝑥 ≤ 0.5)

0     (𝑥 < 0, 𝑥 > 0.5)
 −  (3) 

 

 
[Figure 3. Reward Function for the LiDAR] 

 

 

5. Action 

I. Exploration (OU-Noise) 

One problem generated by policy-gradient learning is that 

the agent’s action can converge to a local optimum. It means 

there may be a more optimized policy that is appropriate for the 

environment, but the car’s action is stuck in the local optimum 

and does not seek a better resolution; which is called global 

optimum. 

  In order to avoid getting stuck in the local optimum, 

exploratory behavior needs to be led by parameter noise, the 

noise which is injected into the parameter space. Beyond many 

kinds of noise factor we’ve chosen Ornstein-Uhlenbeck process 

noise. (Matthias et al) [1] OU-Noise is a non-trivial solution 

that satisfies all of the gaussian process, Markov process, and 

temporally homogenous condition. That solution written as 

below  

d𝑥𝑡  =  𝜃(𝜇 −  𝑥𝑡)𝑑𝑡 + 𝜎𝑑𝑊𝑡 – (1) 

 This OU-process is suitable for the stochastic needed for free 

model and continuous-time process needed for inertial vehicle. 

The adjustable parameters in the OU noise (equation (1)) are 

[Figure 2 Agent model] 



Identification Number: Project report 

 

4 

4 

theta, mu, sigma. By adjusting the variables, we could obtain 

the optimized parameters such as mu=0, theta=0.15, Sigma=0.2. 

 

II. Activation function (Throttle & Brake) 

 
[Figure 4. Throttle & Brake graph] 

For the agent action, there are two main actions to avoid 

obstacle effectively, one is throttling and the other is braking. 

Figure 4. is about speed with time when the agent throttles from 

stationary state or brake from running state. We used hyper 

tangent function as activation function (left side of Figure 4) 

But we modified negative action into positive action by 

applying the absolute function to it. (right side of Figure 4) [1]  

it can minimize the vanishing effect for the agent action. That is 

reason why we applied this modified function to our agent 

operation mechanism. 

 And about the steering part, we used the Ackerman steering 

which has the same curvature of the left, right wheel, which 

makes our car turn corner smoothly. 

III. RESULT 

We trained total 4 thousand episodes which is equivalent to 

300 thousand steps. And training simulation continue until the 

agent collide with obstacles or guardrail. Figure 5 is about the 

distance the car traveled till collision for every training episode. 

The algorithm used on the left graph is DDPG algorithm we 

used at competition. And the other side is CNN DDPG we 

applied newly.  
 

 

50 episodes for the test 

Architecture DDPG CNN DDPG 

Distance 1210 m 1380 m 

Difference rate (%) 14.05 % 

[Table 1. Difference rate of distance of two architectures] 

After the training, we conducted the test for 50 episodes. Test 

simulation also continue till collision. As a result, the agent 

with DDPG algorithm moved 1210 m distance in average and 

CNN DDP algorithm moved 1380 m distance in average 

without collision. And difference rate of the distance is 14.05 %. 

Based on the result of table 1. We could obtain the conclusion 

that CNN DDPG is more stable than DDPG algorithm. 

IV. CONCLUSION 

In this project, we constructed two architectures of the 

algorithm which are DDPG & CNN DDPG for the self-driving 

car.  We expected CNN DDPG to be more stable. This is 

because the data passed through CNN layers contain 

spatio-temporal features which are more about surrounding 

information. As a result, we checked each algorithm’s 

performance as moving distance without collision and 

confirmed that the agent with CNN DDPG could go farther and 

more stables. 
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